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A. GAUSSIAN APPROXIMATION TO THE DISTRIBUTION
OF SAMPLE VARIANCE FOR NONNORXAL POPULATIONS

by

Govind S. ~tidho1kar* and Madhusudan C. Trivedi
University of Rochester Penuwalt Corporation

ABSTRACT

A Gaussian approximation to the distribution of sample variance

using Wilson—Hilferty [12] approach is developed. It is studied for

accuracy and compared with the well known approximations due to Box [2)

and Roy and Tiku (81 by taking the exponential, the double exponential,

the uniform, the product normal and various mixtures of normal distri-

butions as the parent populations. The Wilson—Hilferty approximation

which can be used for probabilities as well as percentiles is seen to

compare favorably with the other two approximations.

Key Words: Gaussian Approximation, Sample Variance, Nonnormal Parent
Populations.
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1. INTRODUCTION AND SUMMARY

Let X1, X2, . . .,  X be a sample from F. Let X — ZX1/n and S2 —

E(X~_I)
2
. S

2 is a very commonly encountered statistic but its exact

distribution is generally intractable except in a few cases such as

a normal parent population or a mixture of normal populations. If P is

a mixture of two normal populations differing only in means then

Hyrenious (3] gives the exact distribution of S2 as a binomial

mixture of noncentral chisquare distributions. On the other hand if F

is a mixture of two normal distributions with common mean but different

variances then S2 can be shown (see Appendix) to be distributed according

to a binomial mixture of quadratic form distributions. The distribution of

s2 is otherwise unavailable but a iumtber of approximations for it are known.

The prominent a~~ng these are the scaled chiaquare approximation due to

Box (2] and the Laguerre polynomial series approximation by Roy and Tiku

(8], which are as follows:

The Box Approximation. Box, in 1953, suggested approximating the

distribution of Y— S2/C2, C2 
— Var(X), by a scaled chisquare variate in

which the parameters are obtained by using the first two moments. Specifically,

Pr( Y t )
~~ ~(~)pb I 7b—1 e —y ip dy (1.1)

where p — Var(!)/in, b ~ alp, and a — E(Y)’.- n—l.

—2—
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The Roy and Tiku Approximation. Roy and Tiku, in 1962, suggested

use of Laguerre polynomials to derive a series approximation for the

distribution of Y — S21( 2C2 ) They proposed,

f t  k
Pr( Y 

~ ) ~~ ~ ~~~~ 2 aj  
(m) L~ 

(a) (y) dy, (1.2)
0

1 m—l -ywhere Pa(7) — y e 
~ 

) ? >  O~

L
J
(m)(Y) — j -~

- 
~(f) —~’ r(m÷j)/r(m+i), (1.3)

is a Laguerre polynomial of degree j, J > o, m — E(Y), k — number of terms

in the approximation, and aj are constants determined by using the first

j moments. Actually,

ai
im) 

— r(m) 
~ (~).

E(_Y)~/r(m+i). (1.4)
1—0

Tan and Wong [11] show that the Roy and Tiku approximation can yield

very unreasonable results in case of a very nonnormal parent population

such as the exponential, the double exponential, or the product normal

distribution. They also examine the two approximations and an alternative

series approximation introduced by them in some detail when F is a mixture

of two normal distributions with a coimnon variance and different means.

They find that the Roy and Tiku approximation and their alternative series

approximation are superior to the Box approximation. It may be noted that

neither the Roy—TUtu nor the Tan—Wong series approximations are very

convenient for approximating percentiles.

—3—
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In this paper the approach of E. Wilson and M. Hilferty (12] to

approximating a chisquare distribution, which was later extended by

Sankaran (9] and by Jensen and Solomon [5] to other cases, is adapted

for developing a Gaussian approximati9n for S2. The new approximation

is presented in section 2. In section 3, this approximation is compared

with the approximations due to Box (2] and Roy and Tiku (8] over a spectrum

of parent populations, namely , various mixtures of normal distributions, the

exponential , the double exponential, the uniform, and the product normal

populations . The conclusions of the numerical study are summarized in

section 4. The Wilson—Hilferty approximation is found to yield a reasonably

good and generally superior approximation.

2. THE WILSON-HILFERTY APPROXIMAIION

Given a nonnegative random variable 7 the Wilson—Hilferty approach

consists in obtaining an almost symmetrically distributed power 7h of Y and

approximating it by a Gaussian random variable. This reasoning may be

attributed to Sankaran [9] who taking a cue from the Wilson—Hilferty

approximation for a chisquare distribution developed an approximation

for the noncentral chisquare distribution. It was further abstracted and

extended to central and noncentral quadratic form distributions by Jensen

and Solomon [53. It may be summarized as follows.

Let K1, K 2, ... denote the cumilants of 7 and let • — K / K 1, r — 2 ,3,..

be bounded . Then by using the Taylor expansion we get ,

h(h—l) $ h 2
— 1 + 2 

2 + (h_l~ (h_ 2) [4~3 + 3(h—3)~2] + o(K~
3) (2.1)

K
1 24K

1
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From this the rth moment ~i ’(h) — E ((Y/1C1)
h]r is obtained by substituting

rh for Ii. Simple computations then yield the following series expressions

for these moments in terms of the powers of (K
1

) as follows.

- ±2 + h
2(h~l) [2~3 + (3h-5)$~ 

] + O(Kl~~), (2.2)

p
3(h) 

- ~~~~ ~~ + 3(h-1)*2 
] + 

~~~~~~~~~~~~~~~ (2.3)

j i 4 (h) — 3h44~ / c 1
2 + 0(K

1
3). (2.4)

The exponent h — h0 which approximately syimuetrizes 7 obtained by equating

the leading term of p 3(h) to zero is, therefore,

— 1 — K
1 

K
3

/ 3K
2

2
. (2.5)

(Y/ K
1

)
h0 may now be approximated by the normal distribut ion with mean

ii (h0) and variance a 2 (h~,) — p 2 (h) given by (2.1) and (2.2) respectively.

Now let X1, X2, ~~~~~~~ 
Xn be the random sample of size n from a

population F with finite cumulants C1, C2, .... Then it is well known

(Kendall and Stuart page 290 (6]) that the cumulants K
r~ 

r — 1,2,3 of

Y — S / a  (a C2 )are,

K
1 

— (n—i)

K
2 

— (n—i) 2 [C
4
/ (  no4 ) + 2/(n—1)] (2.6)

— (n—i) 3 [C 6/n2 + 12C 4C2/ {n(n—l) } + 4 (n—2)C~/ {n(n—1) }

+ 8C~/ (n—l) 2 ]/~ 6

_ _  

i. I T T~~



- — ~~~--~~~- .. . -.,.
~~~~

-—-- —- -•-
~
------—— -.--

It is easy to see that in this case — K
r
/K
1 
are bounded and

the Wilson—Hilferty approach is applicable. The exponent h0 Is then

obtained by (2.5) and ii (h0) and a
2
(h) — p 2(h0) as described in (2.1) and

(2.2) respectively. The resulting approximation to the distribution

2function of S is then given by,

Pr( s2.~ t ) ~~ s( { (t/K
1
)~~~ — 

~ (h0)}/a(h0) ]. (2.7)

The corresponding approximation to the ~th percentile of S2 is,

S~ ~~ K
1
[ Z a(h) +u(h ) ]l/ho (2.8)

where is the a
th percentile of standard normal distribution.

3. NUMERICAL COMPARISONS

This section contains numerical comparisons of the Wilson—Hilferty

approximation for the distribution of S2 with the scaled chisquare appro-

ximation due to Box (2] and the Laguerre polynomial series approximation

due to Roy and Tiku (8]. The comparisons are made by either computing or

simulating the true distributions of S2 of samples f rom various nonnormal

populations as described below.

3a. Mixture of Normal Distributions

Case 1. Let X1, X2, ••~~~ 
Xn be a random sample of size n from a

population with p.d.f.

f(x) — pN( u1,a
2 ) + (l—p)N( U2,02 ), (3.1)

where o _~~ 
p .~ 1, ~~

2 
> ~, — < •~j~~~ ~ 2 ~~ and N( p ~

2 
~ denotes the

normal density function with mean ~i and variance ~
2. Then HyrenIus [3]

has shown that,

2 2 n 
~ —iPr( S /o ~ t ) — Z (~) 

p (l—p)~ Pr( X n_i(Xj) ~ t), (3.2)

-6-
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where X 01 (X
1

) denotes the noncentral chisquare variable with n—i degrees

of freedom and the noncentrality parameter A
1 

— i(n—i)( p
1 

— p
2 

)
2
/ (n 0

2
) .

A selection of the values of the exact c.d.f., computed using (3.2) and

the IMSL subroutine ~~CH, together with the errors of the three appro-

ximations computed according to (1.1), (1.2), and (2.7) appear in Table 1.

Case 2. Let X1, K2, ..., X~ be a random sample of size n from a

population with p.d.f.

f(x) — pN( u,a~ ) + (l—p)N( u,a~ ) , (3.3)

where 0 
~ 

p ,~ 1, 
> 0, a~ > 0, — p < ~ , and N( ~ ~

2 
~ denotes

a normal density function with mean p and variance ~
2. Then It is shown

in Appendix that,

Pr( s2 ~ t ) — (fl) p1(1_p)t1~~ Pr(!X 7 .~ t ) , (3.4)

where as described in Appendix ~ A~Y~ is a quadratic form in independently

distributed normal variables . A selection of the “elues of the exact

c.d.f. computed usIng (3.4) and the subroutine FQUAD [7] prepared from

the technique derived by Lmhof [4 1 and the errors of three approximations

appear in Table 2.

3b. Other Nonnormal Populations

The other nonnormal populations used for the comparisons are

(1) uniform, (ii) exponential, (iii) product normal , and (iv) double

exponential. The exact distributions of the sample variances from these

populations are not available. Therefore, the c.d.f.’s are estimated

from the following Monte Carlo experiments.

. 7 —
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Using the generator RANDU, supported by the Digital Equipment

Corporation on PDP 11/70 computers, to generate U(0,l) random variables

and transformations such as Box—Meuller (1] 5000 random samples of

size 20 each from the four populations were obtained . From these

samples the empirical c.d.f. of S2 for each population was then const-

ructed. This process was repeated seven times. For each selected value

of S2 the average of the seven values of the ã.d..f. was used as the value

of Monte Carlo c.d.f..The following is a brief explanation of the

method used to generate random samples for each population.

(1) UnIf orm (0,1): Use of RANDU subroutine.

(ii) Exponential (1): Obtain U U(O,l) then X — —2log(U).

(iii) Product normal: X — Z1Z2 where Zi, I — 1,2 are i.i.d.

N(0 ,l). Obtain U1 and U2 using RANDU then compute

X — —log(U1) Sin( 4 v U2).

(iv) Double exponential (0 ,1): Obtain U — U(0,l) then

X — log(2U) if U < .5, or X — —log(2(1—U)1 otherwise .

A selection of the values of the empirical c.d.f. of S2 of the

samples from the four populations together with the errors of the

three approximations appear in Table 3.

4. CONCLUSIONS

From the numerical studies described in the previous section

the following conclusions are drawn. The abbreviations W—H, R—T, and

Box connote the Wilson—Hilferty, the Roy and Tiku , and the Box approx-

imations respectively.

—8—
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1. From Table 1, corresponding to the mixture of two normal

distributions differing in means only the following can be observed .

(a) The three approximations are reasonable for small values of

1 ~I 2 but their quality deteriorates as the value of Iu 1 — u 21

increases. (b) As the value of p increases W—R improves and Box

worsens. (c) W—H is substantially superior to Box and R—T when the

value of p
1 

— u 2j is large; when the value of j p~~ — is small

it is slightly inferior to R—T. Box is not better than W—li anywhere.

2. From Table 2, corresponding to the mixture of two normal

distributions differing in variances only , the following can be

observed. (a) All three approximations are reasonable over the range

of parameters considered. (b) Box is superior to W—R and R—T when p

is small and the ratio of variances is large. (c) R—T is superior to

W—H and Box when p as well as the ratio of variances is small. (d)

Otherwise W—H and Box are equally good.

3. The observations from Table 3 corresponding to the uniform,

the exponential, the product normal, and the double exponential

populations are as follows. (a) R—T is the poorest performing

approximation, in general embarrassingly so. Clearly the improper

estimates of the probabilities are due to truncation of the series

after four terms. (b) W—H is the best of the three approximations.

Its performance appears to be substantially superior in all four cases.

4. In summary, it is concluded that the Wilson—Hulferty

approximation, derived in section 2, is a reasonable approximation

over the spectrum of popu1at~tons considered. In no case is W—4 the

the poorest of the three nor is it embarrassingly bettered by either

of the other two approximations. When it is superior it is substantially

so.

—9— 
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TABLE 3. Monte Carlo C.D.F~ of S

2 of Samples of Size 20 from
Various Populations and Error~* of the Approximations.

t (1) (2) (3) (4) t (1) (2) (3) (4)

Uniform Exponential

1.1 .0703 15 —86 101 6 .0496 —284 486 1503
1.2 .1252 10 —48 206 8 .1179 —397 500 5715
1.3 .2009 18 37 285 12 .3095 —314 169 5528
1.5 .4085 31 199 228 14 .4028 —146 32 —4578
1.6 .5282 13 197 82 18 .5715 81 —196 —18204

1.7 .6396 36 190 —35 21 .6719 165 —268 —9245
1.8 .7410 32 127 —154 27 .8134 164 —270 —11618
2.0 .8896 —1 —23 —253 34 .9039 100 —161 3049
2.1 .9335 0 —53 —209 42 .9523 61 —35 —2479
2.2 .Q628 —5 —69 —144 50 .9763 25 12 —920

Product-Normal Double Exponential

6 .0590 —250 392 1732 15 .0546 -110 Z40 439
8 .1308 —320 371 6733 19 .1234 —120 228 954
10 .2188 —283 270 10824 27 .3144 —8 61 —160
14 .4062 —91 —2 —4713 31 .4194 30 —56 —1473
16 .4929 —4 —112—16790 35 .5192 45 —1.53 —2145

2]. .6705 104 —254—11665 39 .6092 39 —219 —1796
27 .8085 121 —221 12884 45 .7196 26 —242 —120
34 .9006 67 —128 3893 52 .8125 23 —187 1344
42 .9498 50 —10 —2599 63 .9043 —6 —92 807
50 .9755 15 20 —1015 76 .9568 —11 —5 —301

*Each C.D.F. is estimated on the basis of seven sets of 5000 samples .
** Error = ( Approximate C.D.F. — Monte Carlo C.D.F. )x ~~~
(1) Monte Carlo C.D.F. Pr( S2 ~ t ),  (see section 3b );
(2) Error: Wilson—Hulferty Approximation (2.7); (3) Error:

Box Approximation (1.2); (4) Error: Roy—Tiku Approximation

(1.2).
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APPENDIX

ThE DISTRIBUTION OF SAMPLE VARIANCE

FOR A SCALED MIXTURE OF NORMAL POPULATIONS

Let X1, X2, ..., X be i.i.d. random variables with probability

..density function (p.d.f .)

f(Z)  pN(O ,1) + (l—p)N (O,02), (A.l)

0 -~~ 
p ~ 1 and N(u 02) denotes the normal density function with mean

u and variance ~
2. The corrected sum of squares may be expressed as a

quadratic form in X’s as,

~~ 
( X ~ 

- ~ 
2 ~ (A. 2)

where x’ — (x.1, x2,..., X ), A (I~ 
— n~~ 3). and is the n x n

matrix of l’s. Using this representation it is easy to compute the

characteristic function of X’A ~ as given in the following proposition.

Proposition: The characteristic function of X’A X is given by,

‘~ 
(t) = 

~~~ 
(
~
) P~.(l_P)n r  

~ 
— 2it 

~ A r I~~
”2

~ 
(A.3)

where A is a matrix
—r

I
—r

A — — — — — i —  — —  (A.4)
—r 

~~~~~ ~
2 i
~n-r

The p.d.f. of ~2 can be obtained by inverting the above characteristic

function. This may be done as follows,

—13—



:--~~~. ~~~~~~~ 
—.. ,

Let — B = ~ which is a syimnetric matrix of order n.

Now suppressing the suffix r, there exists a nonsingular matrix ~,

such that, T 1B T — diag ( D1, 
~
2’••

~ ’ 
Dk 

) — Q, k = number of

distinct eigenvalues A 1 of B with respective multiplicity ni~

2j 
X1 1 , and ~~~ — n. Thus,

k n

~I 
— 2it BI — 1T

1
1 II — 2it B~ IT I = II — 2it D I  — II (1 — 2itA ) ~~.

— — — — — i—i i

(A. 5)

Applying the inversion theorem to this characteristic function we

find that,

k —n /2
II — 21t A l  

—1/2 
— n ( 1 — 2itA~ ) (A.6)

i—l

is the characteristic function of — 
~~~~~~~~ 

where are independent

x~ variables. Hence,
I

~~ 
~2 ~ ~~ — 

~~ 
(
~
) ~r(1_~)n_r Pr( 

~r 
~ ~ (A.7)
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